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A method for constructing a canonical nonequilibrium ensemble for systems in 
which correlations decay exponentially has recently been proposed by Coveney 
and Penrose. In this paper, we show that the method is equivalent to the sub- 
dynamics formalism, developed by Prigogine and others, when the dimension of 
the subdynamic kinetic subspace is finite. The comparison between the two 
approaches helps to clarify the nature of the various operators used in the 
Brussels formalism. We discuss further the relationship between these two 
approaches, with particular reference to a simple discrete-time dynamical 
system, based on the baker's transformation, which we call the baker's urn. 

KEY WORDS: Nonequilibrium statistical mechanics; irreversibility; sub- 
dynamics; exponential decay of correlations. 

1. I N T R O D U C T I O N  

A central problem in nonequi l ibr ium statistical mechanics is the derivation 
of irreversible macroscopic behavior from reversible microscopic dynamics. 
For  isolated systems, the microscopic equations of mot ion are time-reversal 
symmetric; the fact that macroscopic systems are time asymmetric indicates 
that the ensembles or probabil i ty distr ibutions which we use to describe 
them are themselves not  symmetric under  time reversal. Thus, as Oliver 
Penrose stated in his 1979 review on the foundations of statistical 
mechanics, "it would be a considerable advance in nonequi l ibr ium statisti- 
cal mechanics if someone succeeded in characterising the set of physically 
possible nonequi l ibr ium ensembles."111 
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Related to this problem is the fact that it is rare to work with the full 
N-particle distribution function for a many-body system. Instead, some 
"reduced" description, such as the one-particle distribution function in 
Boltzmann's equation, is used, and an irreversible kinetic equation is 
derived for this simpler description. The validity of methods for describing 
the time evolution of reduced ensembles, and the accompanying interpreta- 
tions, have been the subject of controversy since the time of Boltzmann. <1'2) 

A group based in Brussels and led by Prigogine has invested several 
decades of work in developing a general method for selecting a repre= 
sentative, reduced ensemble and following its evolution as time passesJ 3-6) 
This method is known as the subdynamics, or "Brussels" formalism. One 
would expect that the class of time-dependent ensemble densities selected in 
this manner should be related to the class of physically possible ensem- 
bles. I~) The Brussels method has been used to derive kinetic equations ~4) 
and also to treat the quantum mechanical decay problem ~7~ and discrete- 
time dynamical systems. (s'9) However, several quite different formulations 
of the theory have appeared over the years, and the complexity of the 
formalism has made it difficult to establish rigorous results. 

Recently, Penrose and Coveney ~~ have proposed a rigorous measure- 
theoretic method of constructing a time-asymmetric "canonical nonequi- 
librium ensemble" (CNEE). The use of the word "canonical" here is 
intended to convey the idea that the ensemble furnishes a simple, standard, 
reduced description which represents the most important features of the 
approach to equilibrium. These authors illustrated their ideas using a 
model discrete-time system, which they named the "pastry-cook's trans- 
formation." 

In a subsequent paper, Evans and Coveney c~ showed that for the 
pastry-cook model, the subdynamics formalism could be used to construct 
a representative ensemble identical to the CNEE. They also located the 
dynamical resonances, discussed by Ruelle ~12~ and others, ~13'14~ for the 
pastry-cook model, showing that the rate of decay of correlation functions 
at long times given by the resonances was the same as that given by the 
subdynamics method. 

In this paper, we extend these results. After defining in Section 2 a 
projection operator which maps densities onto the CNEE, in Section 3 we 
briefly summarize one version of the Brussels formalism. In Section 4, we 
show that under certain conditions, which are no more than are necessary 
to guarantee the validity of the subdynamics method, a finite-dimensional 
kinetic subspace in subdynamics is equivalent to the CNEE of Penrose and 
Coveney. 
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2. THE C A N O N I C A L  N O N E Q U I L I B R I U M  E N S E M B L E  

We shall work with a classical discrete-time dynamical system, which 
is defined by a phase space F and a mapping T from F onto itself. Given 
a starting position Xo in F, the state of the system at time t is x, = T t x o  �9 

To make progress in statistical mechanics we must describe the time- 
evolution of probability distributions p(x). In principle, the distribution 
might be any integrable function. However, as we will see later, for some 
purposes we must impose restrictions on p. 

As the map T moves states forward in time, so the Frobenius-Perron 
operator U moves distributions forward in time. ~5~ U is defined by the 
equation 

Up(x) = Ir6(X - Ty) p(y) dy (1) 

where 6(x) is the Dirac delta function. If p is the distribution at time t, then 
Up is the distribution at time t + 1. The long-time behavior in statistical 
mechanics is determined by the behavior of U'p for large t. We will assume 
that the map T is ergodic, so that averages over long times converge and 
define a natural equilibrium measure zt on the phase space. ~t6~ 

We now introduce an asymptotic operator /7 , (~  in the spirit of the 
Brussels projection operator /7 .  The Brussels/7 extracts from a probability 
distribution p the component lip, which is associated with a particular 
independent mode in the subdynamics of the system. The new ope ra to r /7  
extracts the component /Tp, which decays exponentially with the decay 
rate 2 (121 < 1) of the slowest mode in the system. This is the more impor- 
tant part of the canonical nonequilibrium ensemble (CNEE) of Coveney 
and Penrose. The other component of their CNEE is simply a uniform dis- 
tribution which is unchanged as time passes; we omit this component here. 
We define the asymptotic operator as follows: for x ~ F, 

fflp(x) :=weak lim 2-r{ Urp(x)- P"p(x)} 
r ~ o o  

(2) 

where P" is a projection operator which maps onto the space spanned by 
the equilibrium distribution n(x). Note that this definition differs slightly 
from that given by Coveney and Evans ( ~  in that here we omit the second 
term P"p(x). This will allow us to express the results of Section 4 in a 
simple form. 

For systems which are mixing, any matrix element of the operator 
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U r - P" tends to zero: that is, for mixing systems and measurable functions 

~,P,  
lim (~b, EU"-P ~] p) = 0  (3) 

n ~ o o  

where the brackets denote the usual scalar product of the functions. 
However, f o r / 7  to be well-defined, we need a stronger condition: that the 
rate of convergence to zero in (3) is at least as fast as 2". 

The "weak limit" in (2) means that we confine ourselves to talking 
about matrix elements of the operator, rather than the operator itself. The 
operator /7 is therefore well-defined only when it acts on a distribution p 
such that matrix elements of the form 

(~b, FIp> =frCk(x) ~ p ( x ) d x  (4) 

converge. This means that the function ~b/Tp must be integrable. The condi- 
tions which this imposes on ~b and p will depend upon the details of the 
dynamical system. 

The definition of the asymptotic operator [Eq . (2 ) ]  is simply 
motivated. We assume that the dynamics of probability distributions can 
be separated into a number of exponentially decaying modes, together with 
a component parallel to the equilibrium distribution, which is time- 
invariant. After a large time t, for almost any starting distribution p, modes 
other than the slowest will make a negligible contribution to U'p. We sub- 
tract the component of p parallel to the equilibrium distribution re. Then 
we extrapolate back to time zero, using the decay constant 2 of the slowest 
mode; this procedure supplies the amplitude of the most slowly decaying 
mode at time zero. 

The crucial assumption here is that the dynamics of probability dis- 
tributions can be separated into independent, exponentially decaying com- 
ponents, as in subdynamics, t'7) Recent work by Bandtlow and Coveney tlS) 
has shed light on the subject, although their condition for the separation of 
long-lived modes is not easy to apply in practice, as it depends on the 
topology used for the space of probability distributions. 

From the definition (2), we can immediately see t h a t / 7  is an idempo- 
tent projection operator ( /~z=/~) ,  and that it commutes with the evolu- 
tion operator U. These two features capture the essence of subdynamics as 
defined by the Brussels group, t4)/7 projects onto a subspace of probability 
distributions which is invariant under the time evolution. Since this is 
exactly the purpose of the projection operators defined by the Brussels 
school, it is natural to ask whether the operators are in fact the same. In 
the next two sections we consider this question in more detail. 
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3. THE S U B D Y N A M I C S  F O R M A L I S M  

This section discusses one version of the subdynamics formalism as it 
applies to discrete-time dynamical systems. It is by no means a complete 
treatment, and it is only one of several formulations of the theory. 

The resolvent-based formalism we present here is based on the con- 
tinuous-time version in the book by Balescu. (4) For a concise summary, see 
Coveney and Penrose. (17) A "time-dependent" formulation not involving the 
resolvent has been developed by Coveney and others ('9) and more recently 
the theory has been based on a set of commutation or "intertwining" 
relations, t6'9) All these versions are equivalent. 

More details of the continuous-time formalism and applications in 
statistical mechanics can be found in the book by Balescu. (4) For the 
discrete-time case, see recent papers by Bandtlow and Coveney ('8) and 
Hasegawa and Saphir. (8) 

The Brussels approach is based on the idea of subdynamics. A time- 
dependent ensemble density p(t) (a phase space density in classical 
mechanics or a density matrix in quantum mechanics) is separated into 
several independently evolving components by a complete set of projection 
operators H;. Each projector defines a subspace of densities which is 
invariant under the evolution of the system with time. More precisely, the 
projection operators each commute with the evolution operator. 

In statistical mechanics, the kinetic component lip is the most impor- 
tant, as it is associated with the long-time evolution of the system under 
consideration. Kinetic equations such as Boltzmann's are derived as 
approximations to an exact kinetic equation which is obeyed by part of this 
kinetic component. The other invariant subspaces contain information in 
which we are normally not interested, such as correlations between several 
particles. For systems in thermodynamic equilibrium and for nonequilibrium 
stationary states, the entire description is supposed to lie within the kinetic 
subspace which H defines. (4) In the current paper, the single H subspace 
which we construct is intended to be analogous to the kinetic subspace in 
statistical mechanics. 

Recently, attention has been directed toward abstract dynamical 
systems, such as the baker transformation. (8"9) The study of abstract 
dynamical systems has clarified some fundamental features of the sub- 
dynamics formalism. The choice of the (vector) space of ensemble densities 
is now recognized to be important. The operators occurring in the for- 
malism are taken to act in a "rigged" Hilbert space which is not self-dual, 
rather than in a true Hilbert space; it is maintained that this provides the 
time asymmetry needed for a description of irreversibility/9) 

Moreover, it has become clear that the modes studied by the Brussels 
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group ~8~ are closely related to the resonances uncovered by Ruelle and 
others ~z,13~ which are poles in the Fourier transforms of correlation func- 
tions. These poles give the decay rates of exponentially decaying modes in 
subdynamics. 

The starting point for the "resolvent-based" formulation of sub- 
dynamics is the resolvent operator, defined by 

1 1 .~ 
R(z)  = - -  ~ U ' z - '  (5) 

z - - U  zr  o 

R(z)  is the Laplace transform of U; by inverting the transform, we can 
reconstruct the dynamics of the system. 

The aim is to construct an operator s which picks out the longest- 
lived mode in the system's evolution. The hope is that X(z) will be a simpler 
object than R(z),  but will still give the correct dynamical behavior as 
t--* ~ .  This is a familiar strategy in statistical mechanics; for example, in 
the theory of Brownian motion, by isolating the "slow variables" associated 
with the motion of a massive test particle and averaging over the other 
degrees of freedom of the system, one extracts a description of the motion 
which is valid for large time scales. 

We define an orthogonal projection operator P which projects from 
the full description of the ensemble given by p(x )  to a reduced description 
which, though incomplete, determines the values of our "slow" variables. 
For the case of Brownian motion, P might be chosen so that if p(x )  is 
an N-particle distribution function for the Brownian particle and its sur- 
rounding gas molecules, then Pp(x )  is a one-particle distribution function 
for the Brownian particle only. In the case of quantum mechanics, P is 
usually defined to pick out the diagonal part of the density matrix. 

The Brussels decomposition of R(z)  enables us to construct (with 
some effort) the full resolvent R(z)  from its projection P R ( z ) P .  In fact, it 
can be shown that cjS) 

R(z)  = [ P +  C(:)]  PR(z )  P[ D(z)  + P] + S(z)  (6) 

The operators C(z) and D(-)  are known as creation and destruction 
operators) 4~ They are defined as follows: 

and 

1 Q u P  = P (7) 
C(z) = z - QU----~ r= l 

D(z)  = P U Q  - -  = P (8) 
z -  QUQ r=l 
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where Q = 1 - P  projects onto the subspace orthogonal to the P subspace. 
The operator S(z)  is known as the reduced resolvent, and is defined by 

S(z)  = Q - -  Q = Q(UQ)  r -  ' z - r  (9) 
: -- QUQ r= ] 

In the rigorous justification of this version of the subdynamics for- 
malism ~ ~8) an important point is that if the projector P is chosen so that all 
the "slow variables" are determined by the P subspace projection of the 
ensemble density, then matrix elements o f ( Q U Q ) "  decay exponentially with 
n at a rate strictly faster than the slowest mode in the system. This means 
that the operators C(z),  D(z), and S(z), which share the denominator 
- - Q U Q ,  are each regular for Izl >~ 121, where 2 is the decay rate of the 
slowest mode) ~' ~8~ 

Once a decaying mode has been found by locating a pole of the 
simpler resolvent PR(: )  P, Eq. (6) can be used to write down an expression 
for the decaying component of the full resoivent corresponding to that pole. 
This is useful because modes constructed in this way are truly independent, 
evolving with time separately from the rest of the dynamics. This is the idea 
behind the term "subdynamics." ~4) 

Given an asymptotic form PX(:)  P for the partial resolvent PR(z )  P, 
from Eq. (6) we obtain an asymptotic form for the full resolvent: 

X( : )  = [P  + C(2)] PX(:)  P [ D ( 2 ) +  P]  (10) 

where 2 is the location of the pole in the partial resolvent. C(z) and D(z)  
are replaced by C(2) and D(2) because it is the residue of the pole at z = 2 
which determines the behavior of the component, and C and D are regular 
at this point. The reduced resolvent S(z) plays no part in the long-time 
behavior of the system, because of the rapid decay of (QUQ)",  

x(z)  is the resolvent operator for a single independent mode in the 
subdynamics. From it we can obtain a projection operator/7,  which, acting 
on any distribution p, gives us the component l i p  associated with the 
mode. Since F I R ( z ) =  R(z) /7  = X(z) ,  from the definition (5) of the resolvent 
we have 

/ 7  = lim zX( z )  ( 11 ) 

Therefore 

17= [ P  + C(2)] P/7P[D(2 )  + P] (12) 
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After we have constructed an operator X(z) for the longest-lived mode 
in the system, the time-dependent evolution operator for this mode can be 
obtained from the inverse transform: 

I 
s , = F ~  i } :'z(z) d- (13) 

where the contour encloses the unit circle. The long-time behavior of a 
correlation function 

g~, = <~b, U'~b> - <~, 1 >< 1, ~,> (14) 

is then given by 

limo~ ' g ~ ( t ) =  < q~, Z ,~  ) (15) 

By using a complete set of projection operators P~, each projecting 
onto a finite-dimensional subspace, and extending the asymptotic form of 
each partial resolvent in this way, Hasegawa and Saphir 18) were able to 
give a complete spectral decomposition of the baker transformation, 
including eigenvalues and eigenstates for the Frobenius-Perron operator. 
An important conclusion of their work was that a full spectral description 
of the dynamics of probability distributions cannot be achieved in the 
Hilbert space ~r of square-integrable functions over the phase space. 
Instead, the probability distributions are restricted to a subset of ~ ,  while 
the dual space is enlarged to include a larger class of functionals than the 
dual of ~ .  The space of probability distributions is then spanned by a 
countable set of exponentially decaying eigenstates of U. This "rigged" 
Hilbert space is similar to those used by B6hm I'-~ to treat exponential 
decay in quantum mechanics. 

Another operator which is important in the theory of subdynamics is 
the collision operator ~b(t), which can be thought of as a measure of the 
influence of the Q subspace on the dynamics in the P subspace: 

~k(t) = PU(QU) '  P (16) 

Through its Laplace transform, 

t~(:)= f P U ( Q U ) ' P = - '  (17) 
t = 0  

the collision operator is related to the P subspace resolvent: 

1 
eR(z)  P = P P (18) 

P z - P U P - - ~ ( z )  
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Coveney and Penrose tlT~ recently gave a set of sufficient conditions 
which, when applied to the collision operator, guarantee the validity of 
part of the continuous-time subdynamics formalism. They proved that if 
~b(t) is bounded above in norm by an exponentially decaying function of t, 
and the P subspace is finite-dimensional, then the Brussels formalism 
allows the separation of an exponentially decaying mode which gives the 
long-time behavior in the P subspace. 

4. THE R E L A T I O N S H I P  B E T W E E N  S U B D Y N A M I C S  A N D  
THE C A N O N I C A L  N O N E O U I L I B R I U M  E N S E M B L E  

In this section, we show that when the P subspace is finite-dimen- 
sional, we can construct from the asymptotic operator of Section 2 a set of 
operators identical with the Brussels operators of the last section. 

First, we define operators t~ and /5 analogous to C(2) and D(2) by 
solving the equations 

[ P + ~]  Pf f lP = fflP (19) 

and 

PffIP[ D + P]  = Pffl (20) 

to give 

~. = FIP[ PFIP ] - '  - P (21) 

and 

f i =  [ PffIP] -~ P H -  P (22) 

Then we define 

/ 7 =  [ P +  ~'] P f f I P [ L ) + P ]  

= f f IP[Pf f lP]  - '  P D  (23) 

This operator is identical to the Brussels H, as we will now show. 
We use the identities 

1 
P H P  = P P (24) 

P + D(2) C().) 
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(see, for example, Antoniou and Tasaki(9)), 

and 

P+ C(:)= R(z) P - -  (25) 
PR(z) P 

1 
D(z)+P - -  PR(z) (26) 

PRP(:) 

The last two follow from Eq. (6). For example, Eq. (25) can be obtained by 
multiplying (6) on the right by P/PR(z) P. Equations (25) and (26) allow 
us to write Eq. (24) in the form 

{ 1 l } 
/7 = weak lim R(:)  P ~ P/TP ~-~ PR(z) PR(z) -P PR(:) (27) 

Taking the limit z --. 2 is necessary because both PR(z) P and R(z) have a 
pole at z = 2, so neither is well-defined at that point. Since both poles are 
of the same order, the quotient tends to a well-defined limit, as we now 
show by expanding the resolvents in Eq. (27) using the definition (5). For 
simplicity, we assume that the P subspace is one-dimensional. A matrix 
element of the operator R(2)/PR(2) P can be written as 

R(2) P ) Zr~ U;cZ--r ( 2 8 )  r c I T I  

PR(2) P li::;. ~r=O U ~ .  . . ' ~ .  oC, r _ - - r  

where c is a function spanning the one-dimensional P subspace and U r Qh 
denotes the matrix element (a, U~b). 

We now separate each matrix element into an asymptotic part, which 
decays with the slowest mode's decay constant 2, and a nonasymptotic 
part, which decays more rapidly: 

r __ r ~  U.b -- 2 H,,h + A~') .~ ( 29  ) 

Provided the subdynamics decomposition is valid, the nonasymptotic 
part A decays as r--* ov at a rate faster than the slowest mode. When we 
evaluate the infinite sums, we find 

Ra~(z) = ~  ,b + ,h- (30) 
- -  r =O  ---~ - -  ~"  r =O  
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As z-~ 2, the second term on the right-hand side of this equation becomes 
negligible compared to the first term and we get 

( $ , ( P + C ( 2 ) ) c ) = l i m  l~b, R (2 )  p R ( 2 ) - p  c 

_ n~c  

ffl cc 

= ($,  ( P +  ~)  c)  (31) 

This shows that ~ =  C(2). A similar calculation starting with Eq. (26) 
shows t h a t / )  = D(2) ,  so all that remains to establish the identity of H and 
/7 is to show that Pf f lP  = P H P .  

Using (24) and the results of the last paragraph, we can write 

1 
P H P  = P - -  P (32) 

P + D C  

But 

f f )~ = ( [ P f f lP]  - '  PffI  -- P)(HP[  P H P ]  -1 _ p )  

= [ P / T P ]  -]  p H 2 p [ P f f I P ]  - '  - P H P [ P O P ]  - '  

- [ e f f I P  ] - ' P f f I P  + P 

= [ P f f l P ] - I - P  (33) 

Therefore 

1 
P - -  P = Pf f lP  (34) 

e+3~ '  

Hence Pf f lP  = P H P ,  and we have established the identity of the two expres- 
sions for the projector: / 7=  H. In other words, 

H = f f l P [ P f f l e ]  - '  PffI  (35) 

For the proof outlined above to be meaningful, [P f f lP]  must be 
invertible. Since both P a n d / 1  are projection operators, [ P I I P ] -  ~ is well- 
defined provided that whenever/Tp = 0, Pp = 0 also. In physical terms, all 
the variables which the reduced, P subspace description of the system 
determines must be coupled to the slowest-decaying mode. 

The extension of the above to a P subspace of finite dimension greater 
than one is straightforward. The only important difference is that /lcc is 
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replaced by an operator with finite-dimensional range, which can be 
expressed as a matrix with respect to some set of functions which spans the 
subspace. The case where the P subspace is infinite-dimensional is more dif- 
ficult to treat; we expect that the results of this section will not generalize 
to this case, because this would make a treatment of nonexponential decay 
in the subdynamics formalism impossible. 

Equation (35) expresses an important relationship between the two 
operators H a n d / ) ,  but it does not show that they are identical. One case 
where the two are identical is when the dynamical system satisfies the con- 
dition known as "Axiom A" (for a definition, see Ruelle~2~l), and both P 
and n are one-dimensional. In the case of Axiom A systems, ~131 the long- 
time behavior of correlation functions is governed by an equation of the 
form 

lim g~o(t) = < q~, A>< B, ~ > ~' 
t ~ o c ,  

(36) 

where a is a constant with [0q < 1, and A and B are distributions. Hence 

<# , / l f f>  = <#, A><B, if> (37) 

This, together with Eq. (35), yields the following expression for matrix 
elements of H: 

<dp, H~b> = <q~, A ) < B ,  p[p.FIp] - '  PA><B, ~> 

= <~b, A ><B, ~b><B, P[PfflP] - '  PA> 

= <ok, A><B, ~,>. const 

= <~b,/1r const (38) 

Since we have already established that P H P  = PfflP, this constant can be 
nothing but unity. Hence 

<r H~b> = <~,/l~b> (39) 

for Axiom A systems where P and /7 are one-dimensional and [PfflP] -~ 
exists. 

5. THE BAKER'S  U R N  

The dynamical system analyzed here is a simple extension of the well- 
known baker transformation, and shares several features in common with 
the pastry-cook transformation introduced in ref. 10. The baker transfor- 
mation itself has been widely used because of its simplicity, and because it 
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shares several characteristics with the Hamiltonian systems which are the 
subject of statistical mechanics: it is a measure-preserving, ergodic K-auto- 
morphism and its dynamics is reversibleJ ~6> 

The phase space Fo of the baker transformation is the unit square 
[0, 1)x [0, 1) in the (x, y) plane. The transformation is a bijective mapping 
T from Fo onto itself, described by 

I ( 2 x ,  2 )  if x < l / 2  
T(x, y) = 

l (  y 1) 2x-- 1 , ~ + ~  if x>~l/2 
(40) 

To visualize the transformation, imagine squashing the unit square to half 
its original height, also stretching it out horizontally so that its area is 
unchanged. Then break off the right-hand half of the rectangle and place 
it on top of the left half, to reform the square (see Fig. 1 ). 

The baker transformation is easy to analyze because of its simple 
symbolic dynamics. Any point in the phase space can be described by a 
biinfinite string of binary digits { ogi; i ~ Z +}. The infinite string c0~02t03. �9 

P •  

/ 

Fig. 1. The baker transformation. 
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is the binary expansion of x, and moOg_ ~ co_2..-  is y in binary. The baker 
transformation is then a shift of  the string one place to the left: 

TOg~ = ogi+ l (41) 

Once the transformation has been expressed in this form, it is possible to 
examine its ergodic properties in a straightforward way. (16) 

We extend the baker transformation by introducing a new variable c, 
the "color," which can take one of  two values: c =  1 (white) or c = -  1 
(black). We also define a small patch on the unit square: for example, X 
could be the region x < 1/4; see Fig. 2. After each application of  the 
ordinary baker transformation (40), we look to see whether the (x, y)  coor- 
dinates of  the system lie in the patch. If they do, then the color variable is 
changed. If  not, then the color is left unchanged. This model is similar to, 
but distinct from, the pastry-cook transformation introduced by Penrose 
and Coveney. (io) 

In the symbolic dynamics, a point in the phase space F is now 
described by the pair x = (o9, c), where 09 is a biinfinite sequence of  bits as 
before, and c �9 { - 1, 1 }. The transformation is equivalent to the mapping 

Tx = T(Og, c) = ( TOg, ( - 1 )z~r,,) c) (42) 

where 2,(o9) is a characteristic function defined to be 1 when o9 is in Z and 
zero otherwise. We will take Z(og) to be a product  of a finite number  of 
adjacent binary digits: 

Z(Og) = O9oO91 , . .co ,  - ] (43) 

In this case, the color-changing patch is the region x > 1 - 2  -k 

Fig. 2. Phase space for the baker's urn system. The color-changing patch is shaded black. 
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As one might expect, this dynamical system is mixing, and therefore 
ergodic. We will not give the proof of the mixing property here, since it is 
very similar to the proof for the pastry-cook's transformation given by 
Penrose and Coveney)~~ 

Like the pastry-cook model and the Ehrenfests' urn, (22~ this dynamical 
system can be thought of as a crude model of a gas contained in two 
vessels with convex walls and connected by a narrow constriction. One 
vessel is the c--- 1 half of the phase space, the color-changing patch is the 
constriction, and the other vessel is the c = - 1  region of the phase space .  
Equally, it might be taken to represent a single vessel containing two 
distinct molecular species which interconvert when the molecules hit the 
color-changing patch. 

In the former case, if most of the gas were concentrated in the left- 
hand vessel, the system would slowly relax toward equilibrium as the 
concentrations equalized. A similar interpretation of the approach to 
equilibrium holds in the latter case. In our system, if an ensemble of points 
in the phase space starts with an uneven distribution of colors, the color 
distribution relaxes, through successive applications of the transformation, 
toward a fine-grained mixture of black and white--almost a uniform gray. 

To make further progress with our analysis, we must describe the 
evolution of these ensembles of phase-space points. An ensemble is 
described by a probability distribution p(x),  and its evolution is given by 
the Frobenius-Perron (~5) operator U generated by the transformation T. 
This has a particularly simple form for our measure-preserving, bijective 
map: 

Up(x) = p ( T - i x )  = p( T -  io), ( _ 1 )x(,,,~ c) (44) 

6. P - S U B S P A C E  D E S C R I P T I O N  OF THE BAKER'S  U R N  

We now specify a one-dimensional projection operator P, which 
projects the full dynamics onto the subspace spanned by the distribution c. 
Acting on an arbitrary function of the phase-space variables co and c, P is 
defined as follows: 

t "  

Pp(o), c)= c Jrp(o)' ,  c') c' do)' de' (45) 

or, using bracket notation 

Pp = c( p, c)  (46) 

The evolution of the system in the P subspace determines how the color 
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variables behaves. The first step in our analysis is therefore to describe the 
dynamics in the P subspace. For example, we must find a representation of 
the action of U in the P subspace. Using the definition of P above, and the 
description of U in terms of the symbolic dynamics [Eq. (44)], we find 

PUPp = eUc( p, c) (47) 

= P( - 1 )z(,o~ c (  p, c )  (48)  

= c (  ( - 1 )z.,,~ c )  ( p,  c )  (49)  

= c ( l  - 2 p ) ( p ,  c)  (50) 

= ( 1 - 2 p ) P p  (51) 

where p = 2 -k is the area of the color-changing patch in the unit square. 
This means that we can write PUP as (1 - 2p) P. 

A central object in the theory of subdynamics (see Section 3) is the 
resolvent operator R(z). In the appendix, we use the methods of probability 
theory to find the P subspace representation PR(z) P of the resolvent: 

( 2Z) l -k+2z  2 + 2  t -k ( l  - - 2 : ) - - Z - -  1 
PR(z)P= [ ( 2 Z ) J _ k + ( z _ I ) ( 2 Z + I ) ] ( Z _ I )  (52) 

We also show, by considering the poles of PR(z)P, that the long-time 
behavior in the P subspace is exponentially decaying, with a certain decay 
constant 2. In fact, as t--* oo, we have 

weak lim PU'P=P~2' (53) 

where p and 2 are constants, and L2I < 1. In the language of subdynamics, 
this allows us to write down an asymptotic P subspace resolvent (see 
Section 3), 

P,S(z) P = fl (54) z - ) t  

Also, from Eq. (18), which we rearrange to give 

1 
~ ( z )  = e z  - P u e  - (55) 

PR(z) P 

we can obtain an expression for the collision operator ~(z), 

( z -  1 ) [ ( 2 z ) ' - k + 2 z  z _ z _  1] (56) 
~'(Z) = z + 2 1 - k - 1  (2Z) , - - k+21-k ( l_2z )+2Z2_z_ l  
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These results demonstrate both the similarities and the differences 
between the urn and the pastry-cook model of Penrose and Coveney. t to~ The 
pastry-cook model has long-time behavior of the same type as the urn, 
obeying an equation like (53). But the collision operator for the pastry-cook 
model is identically zero ~'~ and this makes the P subspace dynamics much 
simpler than for the urn. As one can see from Eq. (18), when ~ ( - ) = 0 ,  
the P subspace resolvent has only one pole, at Pz= PUP, or z = 1 -  2p. 
This means that P R ( z ) P =  p r ( - ) p :  the long-time behavior is no simpler 
than the general P subspace behavior. There is no separation into "sub- 
dynamics" in the P subspace. By contrast, in the baker's urn, the long-time 
limit allows a great simplification. 

In work with the subdynamics formalism, use has often been made ~4''71 
of a "dissipativity condition." This condition guarantees that the amplitude 
of any mode in the P subspace decays with time rather than growing 
exponentially or remaining constant. 

In the present case, exponential growth is not possible, because the 
evolution operator is unitary on the Hilbert space ~ of square-iniegrable 
phase space functions, and the P subspace is a subset of .gff. Therefore to 
guarantee exponential decay, we need only confirm that PR(z)P has no 
poles on the unit circle. A dissipativity condition which ensures this, 
analogous to the one formulated by Coveney and Penrose ~171 for con- 
tinuous-time systems, is the requirement 

I1~(-) + PUPIl < 1 when Izl = 1 (57) 

where I1" I1 is the usual norm for the Banach space of linear operators from 
fff onto itself, induced by the Hilbert-space norm I1" I1.,~: 

IITII := sup IlTxll.,r (58) 
I I - ' c l l . ~  = 1 

Such a condition is not necessary for our analysis of the baker's urn, 
since in the appendix we show that the largest pole in PR(z)P has 
magnitude less than 1. However, it is not difficult to verify numerically that 
the requirement (57) is indeed satisfied. 

In statistical mechanics, the most important purpose of the sub- 
dynamics formalism is the derivation of kinetic equations. Although in a 
discrete-time system it is not possible to find differential equations for the 
evolution of parts of the probability distribution, there is a discrete-time 
difference equation which is closely analogous to the general continuous- 
time kinetic equation which arises in subdynamics. 
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To derive this difference equation, we start with the equation for the 
time evolution of a single independent mode in the subdynamics: 

l ip ,+ I = UHp, (59) 

Now we operate on the left with the projector P and use the identity 
1 = P + Q :  

POp,+,  = PUPI-Ip, + PUQl-lp, (60) 

Since, by Eq. (12), Q/7 = C(2) PH, we have 

PHp,  + l = OPHp,  (61) 

where O = P U ( C ( 2 ) +  P ) P .  This is a closed kinetic equation for the P 
component of a single subdynamics mode. In the case where P is infinite- 
dimensional, such equations may be extremely complex. However, when P 
and therefore /7 are finite-dimensional, the equation has a very simple 
form, as can be easily demonstrated using the results of Section 4. Since, by 
Eq. (31), 

C(2) + P = f l iP[PHP]  - '  (62) 

and Ufli = 2fli, we have O = 2, and the kinetic equation is simply 

PHp,  +, = 2PHp,  (63) 

This is the subdynamics kinetic equation for the baker's urn, and indeed for 
all systems analyzed using subdynamics with finite-dimensional projection 
operators. 

7. ASYMPTOTIC  OPERATORS FOR THE BAKER'S URN 

If we wish to apply the asymptotic operator introduced in Section 2 to 
the baker's urn system, we must determine how the integrability condition 
discussed there restricts the space of possible ensemble densities p. Since a 
function which is continuous almost everywhere is Lebesgue-integrable, a 
matrix element (~, U ' p )  will be well-defined when ~n p  is continuous 
except on a set of zero measure. 

The condition of continuity on a function f ( x , y )  can be expressed 
using the symbolic dynamics. Define the functional 

b , , [ f ]  :=max  [ max I f (~  + bo~)-f(co)l]  (64) 
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where the maximum is over all biinfinite strings of bits &~i ~ { - 1, O, 1 } 
which have all bits to the left of  the n th place equal to zero. 

A theorem that allows us to give a simple condition on the phase- 
space functions ~b and p which ensures that (~b, flip) is well-defined is the 
following: 

Theorem. If, for some finite ct, 6,,[p]/2" --* ct as n ~ or, then for all 
y e [0, 1), f l ip(x ,y)  is almost everywhere (a.e.) continuous as a function 
of x. 

Proof. To prove this theorem, we need the following result. 

L e r n m a .  f t , [ p ] - .  0 as n--* co; then p ( x , y )  is almost everywhere 
continuous as a function of  x. 

To see this, note that fi, ,[p] -* 0 means that for any e >  0, we can find 
N~ such that n > N ,  implies fi, ,[p] <e .  Now for any point x which has a 
nonterminating binary expansion, choose 

t~ = min I x -  2-N~il (65) 
i e Z  

Then if I~xl < t,, the ~o9 equivalent to ~x has no nonzero bits to the left of  
the N, th, and so the [~P[ associated with ~x is less than e. Hence p(x, y) 
is continuous at all points with a nonterminating binary expansion. Since 
the set of such points has measure one, p is continuous a.e. | 

Now we proceed to the p roof  of the theorem. The lemma tells us that 
the function f = / T p  is continuous a.e. if 

0 =  lim 6,,[f] 
n ~ o c ,  

= lim lim 2-rdi , , [Urp• (66) 
n ~ o c .  r ~ o o  

where p~ = p - P ~ p  is the component  of  p or thogonal  to the equilibrium 
distribution ~z. Hence, since 6 , [  Up ] = r + i [ P ], f is continuous if 

0 =  lim lim 2- ' ,~ , ,+ , [p•  (67) 

= lim lim 2"2-~"+')~5,,+,[p.] (68) 
t l  ~ c r  r ~ ,::r 

= lim lim 2 " 2 - ' 6 s E p •  (69) 

But if 5 , , [ p •  ~, then the last line of (69) is  equal to zero, and hence 
f =  flip is continuous a.e. This proves the theorem. | 
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If we define the domain of /~ as the set of functions p which are 
integrable and satisfy the condition 

6,,[p]/2" ~ (70) 

for some finite ct, then for bounded functions ~b, (~b,/Tp) will be well- 
defined. 

The condition (70) is a smoothness condition on p as a function of x, 
whose strength depends on the value of 2. For values of 2 between 1/2 and 
1, (70) is implied by uniform Lipschitz continuity with exponent - l o g z  2. 
We may therefore take our space of allowable probability distributions to 
be the functions p(x,y) which satisfy this Lipschitz continuity condition 
with respect to their x dependence and which are integrable. This ensures 
the convergence of (~b,/~p) provided ~b is bounded. A similar Lipschitz 
condition, derived in a different way, was used by Coveney and Penrose in 
their analysis of the pastry-cook modelJ ]~ 

This is one consistent way of ensuring convergence, but it is not the 
only one. The Lipschitz continuity condition can be regarded as a con- 
straint which forces correlations of the function p(x, y) to decay exponen- 
tially as it evolves forwards in time. We might call this "thermodynamic" 
behavior, since it reflects the tendency toward equilibrium which we see in 
physics. However, we could just as well ensure the convergence of matrix 
elements o f / ~  by allowing p to be any bounded function, and restricting 
~b to be Lipschitz continuous with respect to y. In this case the function ~b 
has the same "thermodynamic" properties as p did in the first case, but 
with the direction of time reversed. 

This choice between two solutions which are in a sense adjoint to one 
another and which are associated with different directions of time also 
arises in the rigged Hilbert spaces used by Antoniou and Tasaki (9) and 
Hasegawa and SaphirJ 8) It is important to realize that these non-self-dual 
function spaces are not merely a mathematical convenience; they have 
direct physical implications. It is at this point that time asymmetry enters 
a previously time-symmetric theory. 

It was shown by Penrose and Coveney t ~o~ that for functions ~b, p which 
are Lipschitz continuous, a matrix element of the operator /1 for the 
pastry-cook transformation can be written as 

(ok, flip) = ( ck, B ) (  A, p) (71) 

where A and B are distributions. A similar result holds for the baker's urn 
model, with the distributions A and B being defined by 

( A , p ) =  lim 2-r(c,p(X) SoS_l...Sr_l) (72) 
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and 

($ ,B)  =p lim 2--r(c,$(X)SIS~.''Sr) 
r ~ .  

(73) 

where s i=  ( - 1 )  x~r'-'o~. This result can be proved in the same manner as 
the corresponding result for the pastry-cook model. Here we justify 
Eq. (71) in a rather less rigorous way. 

First consider 

lim (4, U'$) (74) 
t ~ o c ,  

The components of ~b and ~, which are even and odd in c will evolve 
separately under U, so we shall write them separately: 

4~(o9, c) = (~e(og) + c~o(og) (75) 

~b(og, c) = ~ke(og) + CqJ o(og) (76) 

We then have 

(r  u ' r  = ($ , ,  u ' r  + (r U'cq,,,) 

(77) 

The third and fourth terms are zero. Correlation functions for the naked 
baker transformation decay at least as fast as 2 - ' ,  as demonstrated by, for 
example, Hasegawa and Saphir. (8~ Thus, in the limit r---, o0, the first term 
cancels with the term (~b, P"~k) in the matrix element of/7. This leaves the 
second term, which we can write using the symbolic dynamics as 

(C~o(O9). SoSt " " s , /2s . / z )+  I " " s , -  I t~o( T I  - ' o 9 ) )  (78) 

This form is useful because Eq. (53) can be written using this notation as 

lira ( S t S 2 " ' ' S r ,  1)=f12 '  (79) 

From (79), it follows that 

lim ( s l s 2 . . . s ,  1 ) = f l ( s l s 2  
t ~ o c ,  

�9 s,/2, 1 ) ( 1 , s ( , / z ~ + l s ( , / z ) + z " ' s , )  (80) 

Now in Eq. (78), as we take the limit t --* ~ ,  the correlation between ~bo(o9) 
and qJo(T3- 'og)  decays, and correlations between the two parts of the 

822/77/I-2-18 
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bracket depending on ooe for i > t/2 and for i <~ t/2 are due solely to the si. 
Equation (78) then becomes 

((~o(O9),SoSj...s,/2) f l ( s , / 2 ~ + , . . . s , _ l , $ o ( T l - ' o 9 ) )  (81) 

and the matrix element for n is therefore 

( q~, ffl~b ) = ( ek, B ) (  A, ~ ) (82) 

where A and B are the distributions defined by (72) and (73). 
Equation (71) gives us a recipe for finding the asymptotic form of 

time-dependent correlation functions such as 

gc,,(t) = ($ ,  U ' ~ )  - ($ ,  1 ) (  1, 6') 

= (~b, U'~b) - ( r  e"~,)  (83) 

since 

lim g~( t )=2 ' (~b , /7~b)  (84) 
l ~ o c  

This last equation is correct provided that the correlation concerned 
has some component coupled to the color-decay mode, which is the 
slowest-decaying mode in the system. If the correlation has no such compo- 
nent, then it will decay faster than 2', and Eq. (84) will give the value zero 
for the correlation function. 

It is interesting to compare our results with the work of Ruelle and 
others on resonances in dynamical systems. (12"~3) These resonances are 
poles in the Fourier transforms 

~r162 = ~. g~v,(t) z - '  (85) 
l =  - -oc ,  

of correlation functions like Eq. (83). The positions of the poles do not 
depend on the functions ~b and ~b, but the residue of a pole is given by 
(~b, a _ ) ( a + ,  ~ ) ,  where a_  and a+ are distributions (linear functionals). 

The long-time behavior of a correlation function is then given by an 
equation of the form 

lim g ~ ( t ) =  (ok, a _ ) ( a  +, ~b) ~' (86) 
t ~  •  

where �9 is the location of the pole closest to the unit circle. 
The pole 2 which we have found looks similar to a Ruelle resonance, 

but one modification is necessary. To make the summation in (85) con- 
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verge, the correlation function (83) must decay backward as well as 
forward in time. This can be ensured by imposing the condition (70) for the 
limit n ~ - ~  as well as n ~ + or. This imposes a continuity requirement 
on the y dependence as well as the x dependence of functions in the domain 
o f / I .  The pole at 3. then gives a resonance at - =  3., and the residue of the 
pole is determined by (~b, B)(A,  qJ) in Eq. (71). 

The theory of resonances has been established rigorously only for 
Axiom A systems/~2'~3~ The baker's urn and pastry-cook's system do not 
satisfy Axiom A, because the maps which define them are not differentiable. 
However, the main results of the theory of resonances are derived using the 
fact that a symbolic dynamics can be constructed for Axiom A systems.~3) 
It is because a symbolic dynamics exists for each of the two model systems 
we have studied that the results of the theory of resonances apply to these 
systems. 

8. D I S C U S S I O N  

The assumption that correlations decay exponentially with time is 
central to this paper, as it is to the subdynamics formalism (tTI in the 
finite-dimensional cases studied here. If we wish to move from abstract 
dynamical systems into the "real world" of Hamiltonian dynamics, we must 
face the question of whether correlations in real systems decay exponen- 
tially. There are certainly systems of physical interest which do exhibit 
exponential decay. An example is the geodesic flow on a compact manifold 
of constant negative curvature. (23) 

However, the existence of "long-time tails" in hydrodynamics t24~ tells 
us that, in many cases, correlations do not decay exponentially. Also, 
Ruelle ~25) has described a continuous-time dynamical system which shows 
that exponential decay of correlations is not a necessary condition for 
mixing. The rate of decay of correlations in "billiard" systems is still an open 
question. Only a subexponential bound on the decay has been established. 
Bunimovitch ~26~ has reviewed some significant results in the theory of 
model systems such as the Lorentz gas and billiards on variously shaped 
tables. In his opinion, exponential decay is likely to be "exotic" for such 
systems. However, Chernov 127~ has established that decay is exponential in 
some dynamical systems which are closely related to billiards, and conjec- 
tures that his results can be generalized to billiard systems. 

In our approach, there is the possibility of altering the asymptotic 
operator to extract a component of the dynamics which decays algebrai- 
cally rather than exponentially. Since the subdynamics formalism relies 
heavily on the location of poles in matrix elements of the resolvent 
operator, it is not clear how it could be modified to cope with nonexponen- 
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tial decay, except when the projection operator P is infinite-dimensional. 
No rigorous results are known for this case. (]7) 

An important feature of the work we have presented is the way in 
which a restriction on the space of probability distributions arises naturally 
from the requirement that matrix elements of the operator /7 converge. 
This will apply to other systems as well as to the baker transformation. 
Many dynamical systems, including the geodesic flow mentioned above, 
can be represented by a symbolic dynamics which is a shift acting on some 
symbolic sequence. Continuity conditions like that given in Eq. (70) will 
arise if we apply the asymptotic operator to these systems. 

Of course, deriving the space of probability distributions from the 
requirement of exponential decay in a sense amounts to putting the cart 
before the horse. Ideally, one should be able to deduce the space of dis- 
tribution functions from some more fundamental principle which specifies 
the physically allowable ensembles. However, such a principle is lacking. 
The only widely discussed possibility is the "maximum entropy principle" 
of Bayesian statistics, (zs'29~ but this has been criticized on the grounds that 
the choice of prior is arbitraryJ 3~ These foundational issues have been 
reviewed by Penrose. tl) 

APPENDIX.  PROBABILITY THEORY A N D  THE DECAY 
OF COLOR IN THE BAKER'S URN 

In this appendix, we consider the evolution of an ensemble density for 
the baker's urn which has the following probability distribution at time 
/ = 0 :  

po(x) = 1 + c(x) (AI) 

This distribution represents an ensemble which is normalized so that the 
total probability is 1, and which is uniform apart from a nonzero mean 
value of the color: 

(Co) = ( c, p (x )  ) = 1 (A2) 

The goal is to find the mean value of the color at time t, after t applications 
of the transformation: 

( c , )  = (c (x ) ,  U ' p ( x ) )  (A3) 

We can treat this problem using the theory of renewal processes, (32) 
because the time between the nth and (n + 1)th color changes is a random 
variable whose distribution, after the first color change, is independent 
of n. 
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Let p, be the probability that, given the starting distribution (A1), the 
first color change occurs at time t. Also let q, be the probability that, if the 
nth color change occurs at time s, the (n+ 1)th occurs at time s +  t. Then 
define the generating functions G~(-) and G(z) by 

and 

~. P' (A4) Gl(z) := .2-7 
t = l  " 

G(z):= ~ qt, (A5) 

Let q~,") be the probability that the nth change is at time t. The 
generating function for this quantity is 

G.(z) := ~ __-ql:') Gl(z)[G(z)] "-I  (A6) 
t = n  

Therefore the probability that the nth change is at time t or before is 

b(,,) ~ i,,) , = qr (A7) 
r = l l  

and the corresponding generating function is 

H I") := ~ bl,')z - '  (A8) 
t = n  

= ~ ~ :-,qlfl) 
I = n  r = n  

= ~  Z-(r§ 
k = 0  r = n  

1 
= 1 -- 1/z GI(-)[G(z)]"-l  

(A9) 

(Al0) 

The probability that there will have been exactly n changes after time 
t can be written as 

P(n, t) = b','-b': +1 (All )  
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and so the mean value of the color at time t is given by 

( c , )=  ~ (-1)"P(n,t)  (AI2) 
n ~ O  

= 1 + 2  ~ (-1)"be, "~ (A13) 
n ~ 0  

Finally, we define the color resolvent Rc(z) by 

R~(z) : = -  ( c , )  z - '  (A14) 
t = 0  

1 ~ z - ' + 2  ~ ~ (_lVh'~'- -' = -  , _, _ (A15) 
"~ t = O  -- / = 0  r = l  

1 2 ~  )~ 
z _ l + Z  ( - 1  H~(z) (A16) 

r ~ l  

Assuming the definition of P given in Section 6, the color resolvent Re(z) 
is the P subspace representation of the Brussels resolvent R(z): 

R~(z) = PR(z) P (AI7) 

Using (A10) and summing the series, we find 

2G,(z) - G(z) - 1 
R~(z) = (A18) 

( 1 - z ) [ l  +G(z)]  

To describe the behavior of ( c , )  in terms of the resolvent Re(z), we 
must find the generating functions G~(z) and G(z). To this end, we intro- 
duce two further generating functions: 

FI(:) := ~ u,z-' (A19) 
t = l  

where u, is the probability that any change of color will occur at time t, 
and 

F(z) := ~, v,z-' (A20) 
t = l  
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where v, is the probability that any color change will occur at time r + t, 
given that a color change occurred at time r. F rom the theory of  renewal 
processes t32) we have 

Gl(z) 
Fl(z) = - -  (A21) 

1 - G ( z )  

and 

G(z) 
F(z) = - -  (A22) 

1 - G ( z )  

Combining these equations with (A18), we finally obtain 

2 [ F l ( z ) -  F (z ) ]  - 1 
R,.(z) = (A23) 

[1 + 2 F t ( z ) ] ( l - z )  

The functions F~(z) and F(z) can be calculated without difficulty. 
Since the probability distribution (87) is independent of  co, the probability 
of  a change of color at time t is independent of t, being equal to the area 
of  the color changing patch; thus u, = 2 -k and so 

1 
Fl(z) = 2k(Z _ 1 ) (A24) 

If there is a color change at time O, the starting probability distribu- 
tion is uniform in co apart  from the k binary digits coo ' "cok-~ ,  which are 
set equal to l in every member of the ensemble. These bits are shifted along 
t places to the left after time t, so the probability of  a color change at time 
t is 

2 - '  if t<~k (A25) 
v , =  2_ k if t > k  

The generating function is therefore 

1 - ( 2 z )  ' - k  z 
F(z) 2 z - 1  + (2z)k ( z -  1) (A26) 

and for the resolvent we have 

R e ( z )  = 
( 2z ) l - k  + 2z2 + 2 ' - k ( l  - 2 z ) - z -  1 

[(2z) 1 -*  + (z - 1 )(2z + 1)](z - 1) 
(A27) 

which is Eq. (52) in the main text. 
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We are interested in the asymptotic behavior of  the system for large t. 
To find an asymptotic form for Rc(z), we must locate the pole in Re(-) 
which is closest to the unit circle. This gives the mode in the color evolu- 
tion which decays with the longest lifetime. 

From Eq. (A27) it appears that R,.(-) has a pole at z = 1, but in fact 
the numerator  has a factor ( - - 1 )  and Re(-) is regular on the unit circle. 
By expanding the denominator  in p = 2-k ,  the area of  the color changing 
patch, we can find a pole which is on the real axis and close to the unit 
circle. To first order in p, the location z = ). of the pole is 

2 = 1 - .~p (A28) 

We now show that, at least for k>/6 ,  this is indeed the pole in 
Eq.(A27)  closest to the unit circle. Firs{, note that since the evolution 
operator U for our system is unitary, there can be no poles outside the unit 
circle. Let 

g(z) = (2z) t -k  + (2:  + 1 )(- - I ) (A29) 

This is the denominator  of  Re(-). It is sufficient to show that for k >/6, 
there exists an r o <  2 for which there is exactly one zero -o of  g with 

I-01 > ro. 
Let f ( : )  = (2-- + 1 ) ( : -  1), and denote the circle of  radius r, centered 

on the origin, by Cr. We employ Rouch6's theorem, using the functions f 
and g and the contour  Cr. We have I f - g l  < If l  on C~ provided that 
1 ~< r < 1/2 and (2r - 1 )( 1 - r) > (2r) * - k. A simple numerical calculation 
shows that this condition is satisfied when r takes the value ro=0.87 ,  
provided k/> 6. Rouch6's  theorem then tells us that for k />6,  there is 
exactly one zero of  g outside the circle Cr. Since 2 is outside C~, this zero 
must be 2. Hence 2 is the pole of  Rc closest to the unit circle. 

The asymptotic form of the resolvent is therefore 

fl (A30) 
Z c ( - ) =  : _ ; t  

where 

f l =  lim ( : - 2 )  R~(:) 

= l --4p/3 + O(p 2) (A31) 

and so the asymptotic behavior of  the color variable is given by 

lim ( c , ) = f 1 2 '  (A32) 
t ~ ,  
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The formulas (A27), (A30), and (A32) are the final results of our 
probability-theoretic analysis. Although they give only a limited description 
of the system, they can be used as the starting point for the more general 
approach described in Section 7. 
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